# Arthrex Tape-Style Sutures vs Competitor Products: A Biomechanical Study

Arthrex Orthopedic Research

## Background

Flat-braided tape-style sutures are an alternative to traditional round sutures that provide a larger contact area with the tendon or tissue during repair.¹ The purpose of this study was to compare the strength and tensile properties of Arthrex's SutureTape and FiberTape® sutures to comparable sutures from leading competitor manufacturers.³

### Materials and Methods

A series of pull tests were conducted to compare the tensile properties of Arthrex's SutureTape and FiberTape suture to several competitors' tape-style sutures. These tests included straight-pull and knot-pull tests to evaluate tensile properties under various clinically relevant conditions. The Arthrex and competitor products evaluated in this study are shown in Table 1.

**Table 1.** Arthrex and competitor products evaluated in this study

| Company        | Suture Size | Product              |
|----------------|-------------|----------------------|
| Arthrex        | 1.7 mm      | FiberTape            |
|                | 2.0 mm      |                      |
|                | 1.3 mm      | SutureTape           |
|                | 1.7 mm      |                      |
| ConMed         | 1.3 mm      | HiFi® Ribbon         |
|                | 2.0 mm      | HiFi Tape            |
| DePuy Synthes  | 2.5 mm      | PERMATAPE™           |
|                | 2.5 mm      | DYNATAPE™            |
| Smith & Nephew | 2.0 mm      | ULTRATAPE            |
| Stryker        | 1.2 mm      | XBraid <sub>11</sub> |
|                | 1.4 mm      |                      |
|                | 2.0 mm      |                      |
|                | 2.2 mm      |                      |

# Straight-Pull Test: Sample Preparations

The suture being evaluated was laid out with its midsection against a ruler. The suture was marked with a permanent marker to prepare samples according to USP standards.<sup>3</sup>

## **Knot-Pull Test: Sample Preparations**

A 5 mm Allen key was secured to a tabletop vise, and a precut<sup>2</sup> PVC tube was fit to the end of the Allen key. The middle of the suture was aligned with the PVC tube, and a surgeon's knot was tied.

The PVC tube was pulled off the Allen key, and the suture was laid against a ruler with the knot at the 2.5-in mark. The suture was marked with a permanent marker to prepare samples according to USP standards.<sup>3</sup>

## Test Setup and Load Application

The following steps for test setup and load application were performed for both the straight-pull and the knot-pull test following sample preparations.

A pneumatic clamp was secured to the load cell/ actuator of the Instron (model 5544). Bluehill software was opened and used to calibrate the 2 kN load cell.

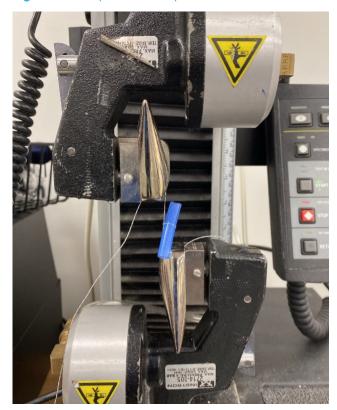
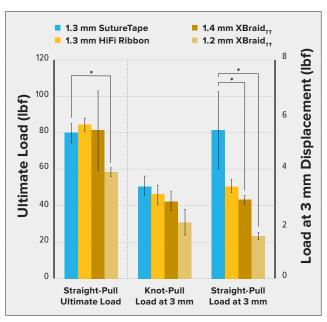

A prepared suture sample was placed in the grooves of the top pneumatic clamp with the mark at the closure interface. Images of the straight-pull and knot-pull test setups are shown in Figures 1 and 2, respectively.



Figure 1. Straight-pull test setup



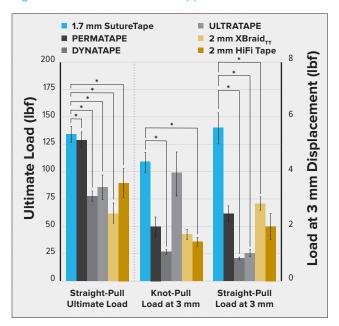
Figure 2. Knot-pull test setup




A manual preload ranging between 1-5 N was applied. Once the preload reached the desired range, tensile load-to-failure testing was performed at a rate of 12 in/min. Data was recorded at 500 Hz. The maximum load and load at 3 mm displacement were recorded for further analysis.

### Results

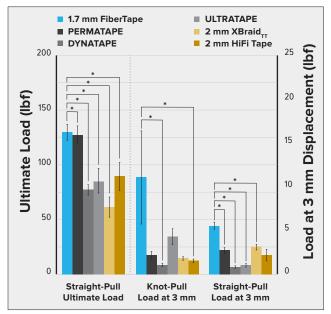
Arthrex's 1.3 mm SutureTape outperformed all comparable competitor products with respect to load at 3 mm displacement in both the straight-pull and the knot-pull test.<sup>2</sup> No statistically significant difference was observed between the straight-pull ultimate load of 1.3 mm SutureTape and the straight-pull ultimate loads of 1.3 mm HiFi ribbon (ConMed) or 1.4 mm XBraid<sub>TT</sub> (Stryker) (Figure 3).


**Figure 3.** Straight-pull ultimate load, knot-pull load at 3 mm displacement, and straight-pull load at 3 mm displacement comparison for 1.3 mm SutureTape vs comparable competitor products with statistically significant differences shown (\*)



Arthrex's 1.7 mm SutureTape outperformed all comparable competitor products with respect to straight-pull ultimate load. A statistically significant difference was observed between the straight-pull ultimate load of 1.7 mm SutureTape and the straight-pull ultimate loads of all comparable competitor products.<sup>2</sup>

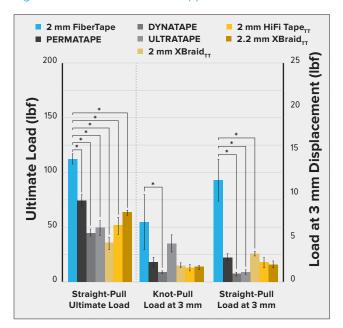
Knot-pull and straight-pull loads at 3 mm displacement were greater for 1.7 mm SutureTape than for all comparable competitor products.<sup>2</sup> Due to non-normally distributed data, a nonparametric ANOVA on ranks was used for comparison (Figure 4).


**Figure 4.** Straight-pull ultimate load, knot-pull load at 3 mm displacement, and straight-pull load at 3 mm displacement comparison for 1.7 mm SutureTape vs comparable competitor products with statistically significant differences shown (\*)



Arthrex's 1.7 mm FiberTape® suture outperformed all comparable competitor products with respect to straight-pull ultimate load. A statistically significant difference was observed between the straight-pull ultimate load of 1.7 mm FiberTape suture and the straight-pull ultimate loads of all comparable competitor products.<sup>2</sup>

Knot-pull and straight-pull loads at 3 mm displacement were greater for 1.7 mm FiberTape suture than for all comparable competitor products.<sup>2</sup> Due to non-normally distributed data, a nonparametric ANOVA on ranks was used for comparison (Figure 5).


**Figure 5.** Straight-pull ultimate load, knot-pull load at 3 mm displacement, and straight-pull load at 3 mm displacement comparison for 1.7 mm FiberTape suture vs comparable competitor products with statistically significant differences shown (\*)



Arthrex's 2 mm FiberTape suture outperformed all comparable competitor products with respect to straight-pull ultimate load. A statistically significant difference was observed between the straight-pull ultimate load of 2 mm FiberTape suture and the straight-pull ultimate loads of all comparable competitor products.<sup>2</sup>

Knot-pull and straight-pull loads at 3 mm displacement were greater for 2 mm FiberTape suture than for all comparable competitor products.<sup>2</sup> Due to non-normally distributed data, a ANOVA on ranks was used for comparison (Figure 6).

**Figure 6.** Straight pull ultimate load, knot-pull load at 3 mm displacement, and straight-pull load at 3 mm displacement comparison for 2 mm FiberTape suture v. comparable competitor products with statistically significant differences shown (\*)



### Conclusion

All Arthrex products that were evaluated in this study had greater straight-pull and knot-pull loads at 3 mm displacement, which represents the clinical failure of polyblend sutures, than their respective competitor products. 1.7 mm SutureTape, 1.7 mm FiberTape suture, and 2 mm FiberTape suture had significantly greater straight-pull ultimate loads than competitor products while 1.3 mm SutureTape had a straight-pull ultimate load that was similar to that of the competitor products. The results of this testing illustrate that a Arthrex tape-style suture can withstand greater tensile loads and may be less likely to fail than their comparable competitor products.

#### Reference

- Huntington L, Coles-Black J, Richardson M, Sobol T, Caldow J, Chuen J, Ackland DC. The use of suture-tape and suture-wire in arthroscopic rotator cuff repair: a comparative biomechanics study. *Injury*. 2018;49(11):2047-2052. doi: 10.1016/j. injury.2018.09.004
- 2. Arthrex, Inc. Data on file (APT-05969). Naples, FL; 2023.
- 3. General Toxicology and Medical Device Biocompatibility (GTMDB05). IUSP29-NF24, page 2776. Rockville, MD: USP; January 1, 2006.
- Ravalin RV, Mazzocca AD, Grady-Benson JC, Nissen CW, Adams DJ. Biomechanical comparison of patellar tendon repairs in a cadaver model: an evaluation of gap formation at the repair site with cyclic loading. *Am J Sports Med*. 2002;30(4):469-473. doi:10.1177/03635465020300040301

#### arthrex.com

